Structure Reports

Online
ISSN 1600-5368

Christopher G. Hamaker,* Oksana Maryashina and Dominic P. Halbach

Department of Chemistry, Illinois State University, Campus Box 4160, Normal, IL 61790-4160 USA

Correspondence e-mail: chamake@ilstu.edu

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.149$
Data-to-parameter ratio $=19.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-[2-(Benzylsulfanyl)benzylidene]-2-(methylsulfanyl)aniline

The title molecule, $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NS}_{2}$, is non-planar with a dihedral angle between the two benzene rings bonded to the $\mathrm{N}=\mathrm{CH}$ group of $51.33(8)^{\circ}$.

Comment

Schiff base ligands have played an important role in the development of coordination chemistry due to their ease of preparation (Che \& Huang, 2003). Schiff base ligands are also readily modified, both sterically and electronically. Our group is interested in the synthesis and utility of sulfur-containing Schiff base ligands (Hamaker \& Halbach, 2006; Hamaker \& Corgliano, 2006). As part of our ongoing studies, we report the synthesis and crystal structure of the title compound, (I).

(I)

The $\mathrm{ArN}=\mathrm{CHAr}$ moiety in (I) (Fig. 1) is non-planar, with a dihedral angle of $51.33(8)^{\circ}$ between the arene rings. The $\mathrm{N}=\mathrm{CH}$ group is nearly coplanar with the $\mathrm{C} 11-\mathrm{C} 16$ arene ring, with an $\mathrm{N}-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$ torsion angle of 172.4 (2) ${ }^{\circ}$. The $\mathrm{C} 2-\mathrm{C} 7$ arene ring is twisted away from coplanarity to relieve the steric repulsion between H 12 and the SCH_{3} group, with a $\mathrm{C} 10-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 2$ torsion angle of 140.7 (2) ${ }^{\circ}$. The $\mathrm{N}=\mathrm{C} 10$ double-bond length is 1.274 (3) \AA, similar to that in related molecules (Hamaker \& Corgliano, 2006; Ainscough et al., 2000; Özbey et al., 1998).

In the crystal structure, the molecules stack along the c axis; the crystal packing is shown in Fig. 2.

Experimental

To a solution of 2-(methylsulfanyl)aniline ($0.960 \mathrm{~g}, 6.90 \mathrm{mmol}$) in absolute ethanol (50 ml) in a 100 ml round-bottomed flask equipped with a reflux condensor was added 2-(benzylsulfanyl)benzaldehyde $(1.529 \mathrm{~g}, 6.70 \mathrm{mmol})$. The mixture was heated under reflux for 48 h , cooled to room temperature and placed in a freezer at 233 K for 14 h . The reaction product was filtered off, washed with cold ethanol and dried in vacuo to yield 1.490 g (63.7%) of a yellow solid. Crystals (m.p. 267-269 K) were obtained by diffusion of heptane into a $1,2-$ dichloroethane solution of (I). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.95(s$, $1 \mathrm{H}, \mathrm{N}=\mathrm{CH}), 8.30(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 7.49 ($\mathrm{m}, 1 \mathrm{H}$, aromatic), 7.41 (m,

2 H , aromatic), 7.27 ($\mathrm{m}, 8 \mathrm{H}$, aromatic), $6.93(\mathrm{~d}, 1 \mathrm{H}$, aromatic), 4.13 (s, $\left.2 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{Ph}\right), 2.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right)$. IR (Nujol, $\left.v, \mathrm{~cm}^{-1}\right)$: $1602(\mathrm{C}=\mathrm{N})$. Analysis calculated (found) for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NS}_{2}$: C 72.16 (72.24), H 5.48 (5.46), N 4.01\% (4.00\%).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NS}_{2} \\
& M_{r}=349.49 \\
& \text { Monoclinic, } P 2_{b} / c \\
& a=9.7960(7) \AA \\
& b=17.1416(16) \AA \\
& c=11.2536(14) \AA \\
& \beta=106.699(8)^{\circ} \\
& V=1810.0(3) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.283 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\text { Cell parameters from } 25
$$

reflections

$$
\theta=5.6-13.7^{\circ}
$$

$$
\mu=0.30 \mathrm{~mm}^{-1}
$$

$$
T=297(2) \mathrm{K}
$$

Plate, yellow $0.50 \times 0.50 \times 0.23 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4

 diffractometer non-profiled $\omega / 2 \theta$ scansAbsorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.784, T_{\text {max }}=0.931$
4362 measured reflections

> 4154 independent reflections 2629 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.045$
> $\theta_{\max }=27.5^{\circ}$
> $h=-12 \rightarrow 12$
> $k=0 \rightarrow 22$
> $l=0 \rightarrow 14$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0823 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$w R\left(F^{2}\right)=0.149$
$S=1.10$
$(\Delta / \sigma)_{\max }<0.001$ 。
4154 reflections
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{-3}$
217 parameters

Table 1
Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{N}-\mathrm{C} 10$	$1.274(3)$	$\mathrm{N}-\mathrm{C} 7$	$1.420(3)$
$\mathrm{C} 16-\mathrm{S} 2-\mathrm{C} 20$	$104.34(11)$	$\mathrm{C} 10-\mathrm{N}-\mathrm{C} 7$	$118.00(19)$
$\mathrm{C} 2-\mathrm{S} 1-\mathrm{C} 1$	$102.87(13)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 11$	$122.8(2)$

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-$ $0.97 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the aromatic and methylene H atoms and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

CGH thanks Illinois State University for partial financial support.

Figure 1
View of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.

Figure 2
The crystal packing of (I), viewed along the c axis. H atoms have been omitted for clarity.

References

Ainscough, E. W., Brodie, A. M., Burrell, A. K., Xiaohong, F., Halstead, M. J. R., Kennedy, S. M. F. \& Waters, J. M. (2000). Polyhedron, 19, 2585-2592.

Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Che, C.-M. \& Huang, J.-S. (2003). Coord. Chem. Rev. 242, 97-113.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hamaker, C. G. \& Corgliano, D. M. (2006). Acta Cryst. E62, o68-o69.
Hamaker, C. G. \& Halbach, D. P. (2006). Inorg. Chim. Acta, 359, 846-852.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Özbey, S., Temel, A., Ancin, N., Öztas, S. G. \& Tüzün, M. (1998). Z. Kristallogr. New Cryst. Struct. 213, 207-208.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

